Digitale Bildsensoren aus Sicht des Amateurs

- Spezifikationen und technische Daten
- Ableitung von praktisch relevanten Vergleichswerten
- Vergleich von ausgewählten Sensoren

Nur am Rande betrachtet:

- Spektraler Verlauf der Empfindlichkeiten
- Qualitatives Rauschverhalten

In diesem Vortrag soll keine Fürsprache für ein bestimmtes Modell oder technisches Prinzip erfolgen, sondern es werden Methoden zur kritischen Bewertung von Kameraparametern vorgestellt.

kai@photonenfangen.de

Spezifikation einer ZWO Kamera

	ASI290MM Mini
Sensor	1 / 2.8" CMOS
Diagonal	6.5mm
Resolution	2.1Mega Pixels 1936×1096
Pixel Size	2.9µm
Image area	5.6mm*3.2mm
Max FPS at full resolution	20.4FPS
Shutter	Rolling shutter
Exposure Range	32μs-2000s
Read Noise	1.0~3.2e
QE peak	80%
Full well	14.6k e
ADC	12 bit
Interface	USB2.0
Adapters	1.25"/M28.5
Protect window	AR window
Dimensions	36mm
Weight	Uncooled 120g/Cooled 410g
Back Focus Distance	8.5mm
Supported OS	Windows, Linux & Mac OSX
Working Temperature	-5°C—45°C
Storage Temperature	-20°C—60°C
Working Relative Humidity	20%—80%
Storage Relative Humidity	20%—95%

Tradition aus der Zeit der Bildaufnahmeröhren. Außendurchmesser des Glaskolbens in Zoll. Lichtempfindliche Fläche der Röhren war deutlich kleiner als der Außendurchmesser! Sinnvoller ist die Angabe der wahren Fläche.

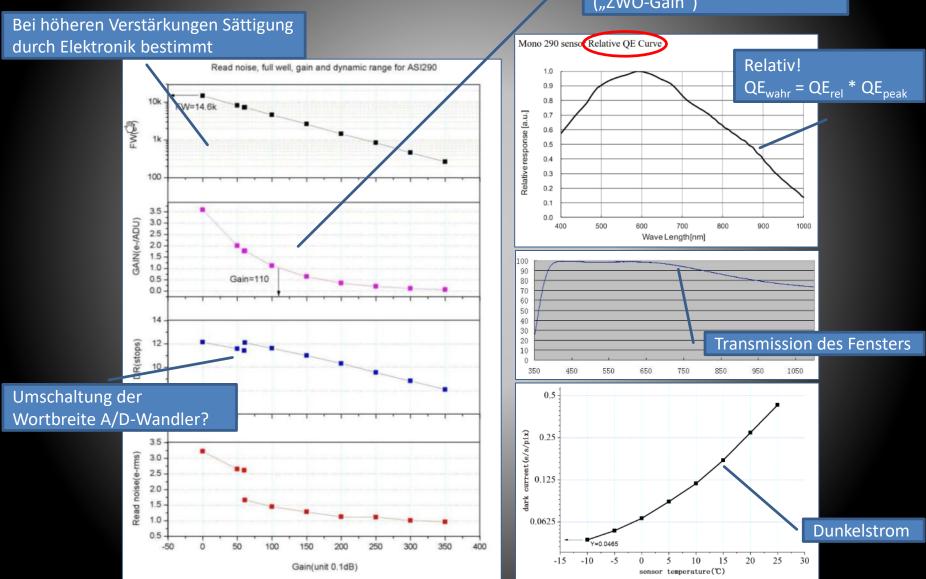
wichtige Größe: gemeint ist Kantenlänge

"Rolling Shutter" wird in der CMOS Technologie verwendet. Die Pixel werden zeilen- oder spaltenweise ausgelesen. Weniger Transistoren erforderlich.

Ausleserauschen. Angabe im Elektronen pro Auslesevorgang. Hier ist ein Bereich angegeben. Das deutet auf variablen Gain hin. Dessen Angabe fehlt aber hier!

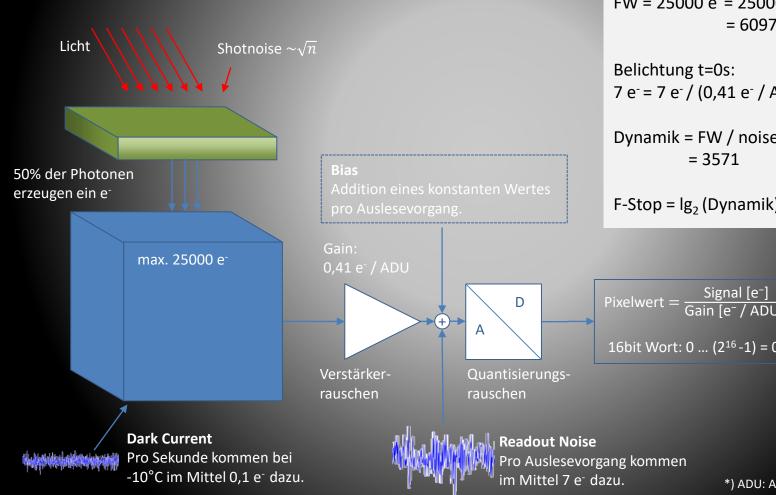
Maximale Quanteneffizienz. Spektraler Verlauf fehlt.

Full Well Kapazität: hier 14600 Elektronen, aber nur bei minimalem Gain! (300 bei max. Gain)


Auflösung der A/D-Wandler

Fehlende wichtige Angaben: Gain (Kehrwert der Verstärkung) Dunkelstrom (themisches Rauschen der Pixel)

Spezifikation einer ZWO Kamera


Positiv: ZWO liefert umfangreiche Daten seiner Produkte.

Gain: 3,5 bis 0,2 e⁻/ADU kleiner Gain = hohe Verstärkung ("ZWO-Gain")

Bildsensor-Parameter: Beispiel KAF-8300

Full	Pix.	Diag.	A/D	gain	\circ	<i>y</i>		FW /	readou	ıt noise	dark	current
weii	Įμmj	[mm]	[DITS]	e/ADU	QE	F-Stop Lin.	gain	ADU	e	-10°C	dT	
25000	5,40	22,2	16	0,41	50%	11,8						5,8

 $FW = 25000 e^{-} = 25000 e^{-} / (0,41 e^{-} / ADU)$ $= 60976 \text{ ADU}^*)$

 $7 e^{-} = 7 e^{-} / (0.41 e^{-} / ADU) = 17.1 ADU$

Dynamik = FW / noise = 60976 / 17,1

F-Stop = \lg_2 (Dynamik) = 11,8

 $Pixelwert = \frac{Signal [e^-]}{Gain [e^- / ADU]}$

16bit Wort: 0 ... (2¹⁶-1) = 0 ... 65535

Bildsensor-Parameter: Übersicht

Chip	Full	Pix.	Diag.	A/D		mittl. QE ⁵⁾	Dyna	ımik	FW / readout noise		dark cur	rent ¹⁾	-Kamera	
Cilip	well	[µm]	[mm]	[SJIG]	e/ADU	QE	F-Stop	Lin.	gain	ADU	e ⁻	-10°C	dT/°C	Ramera
KAI11000	50000	9,00	43,3	16	0,80	50%	12,1	4529	62500	13,8	11,0	0,6	7,0 ⁴⁾	STL11000
KAF8300	25000	5,40	22,2	16	0,40	50%	11,6	3125	62500	20,0	8,0	0,1	5,8 ⁴⁾	G2-8300
KAF8300	25000	5,40	22,2	16	0,41	50%	11,8	3571	60976	17,1	7,0	0,1	5,8 ⁴⁾	383L+
ICX694	18000	4,54	15,9	16	0,27	70%	11,8	3600	66667	18,5	5,0	0,0004		460EXm
ICX814	12500	3,69	15,9	16	0,19	70%	11,3	2500	65789	26,3	5,0	0,0003		490EXm
ICX814	15000	3,69	15,9	16	0,25	70%	11,7	3333	60000	18,0	4,5	?		SX814
MN34230	20000	3,80	21,9	12	5,00	60%	12,4	5556	4000	0,7	3,6	0,01	6,5 ³⁾	ASI1600 ⁸⁾
MN34230	4000	3,80	21,9	12	1,00	60%	11,2	2353	4000	1,7	1,7	0,01		ASI1600 ⁹⁾
IMX183	15000	2,40	15,9	14	3,60	75%	12,1	4286	4167	1,0	3,5	0,004	8,0 ³⁾	ASI183 ⁸⁾
IMX183	4000	2,40	15,9	14	1,00	75%	11,3	2500	4000	1,6	1,6	0,004	8,0 ³⁾	ASI183 ⁹⁾
Canon	65700	6,40	43,2	14	4,20 ²⁾	31% ²⁾	11,4	2715	15643	5,8 ²⁾	24,2 ²⁾	0,5@10°C ²⁾		5DMkII ⁶⁾
Canon	7425	6,40	43,2	14	0,51 ²⁾	31% ²⁾	11,0	2007	14559	7,3 ²⁾	3,7 ²⁾	0,5@10°C ²⁾		5DMkII ⁷⁾
IMX071 ¹⁰⁾	14500	4,78	28,4	14	0,90	40%	12,4	5370	16111	3	2,7	0,005@0°C	6,8 ¹⁰⁾	ASI071

¹⁾ angegeben in e⁻/s

²⁾ www.clarkvision.com

³⁾ astronomy-imaging-camera.com/product/asi1600mm-cool

⁷⁾ ISO800

⁵⁾ Mittelwert 400nm – 800nm

⁶⁾ ISO50

⁸⁾ Min. "ZWO-Gain"

⁹⁾ Unity Gain

¹⁰⁾ landing field.wordpress.com/tag/imx071/

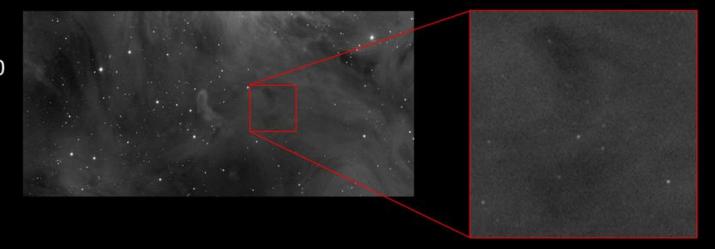
⁴⁾ It. Kodak Datenblatt

Bildsensor-Parameter: Erste Einschätzung Ausleserauschen

Einfachster Ansatz für SNR eines Pixelwertes:

$$SNR = \frac{S}{\sqrt{S + N^2}}$$

Annahme:

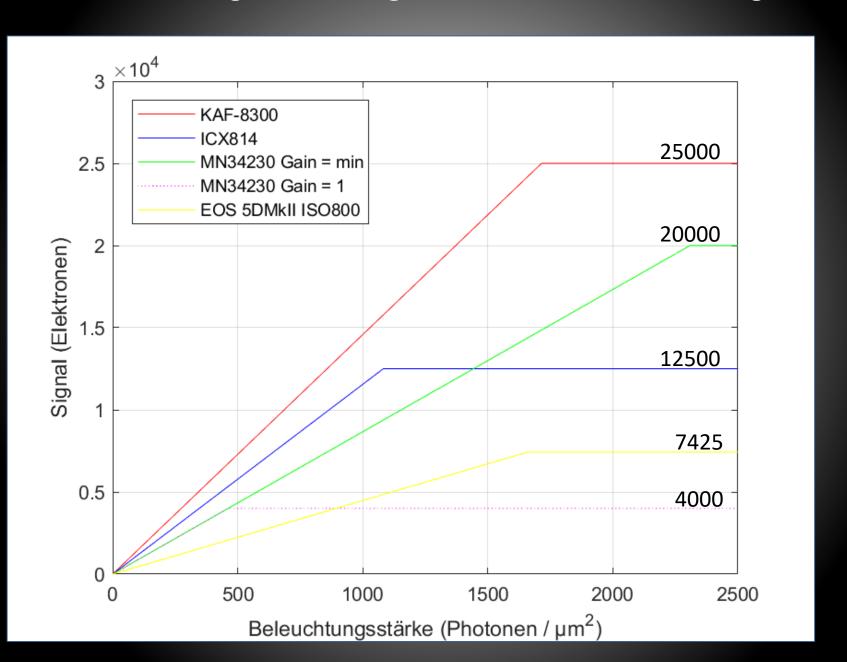

Für Detektion sei SNR von 1:10 erforderlich. Dann ergibt sich für das dazu erforderliche Signal:

$$S = \frac{SNR^2}{2} \pm \sqrt{\left(\frac{SNR^2}{2}\right)^2 + SNR^2N^2}$$

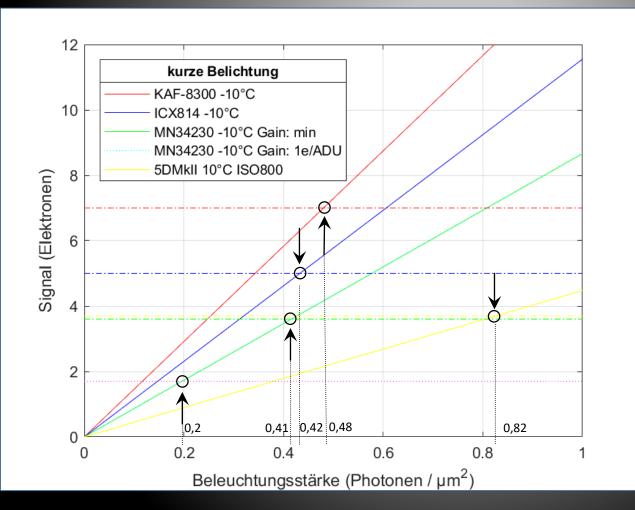
Readout noise	Kameramodell	Erforderliches Sign	al <i>S für SNR =10:1</i>	normiert auf	normiert
e		e⁻	Photonen	ASI183	auf μm ²
11,0	STL 11000m	170,8	342	2,3	4,2
8,0	G2-8300	144,3	289	1,9	9,9
7,0	383 L+	136,0	272	1,8	9,3
5,0	460 EXm	120,7	172	1,2	8,4
5,0	490 EXm	120,7	172	1,2	12,7
4,5	Trius SX814	117,3	168	1,1	12,3
3,6	ASI 1600MM min. Gain	111,6	186	1,3	12,9
1,7	ASI 1600MM Unity Gain	102,8	171	1,2	11,9
3,5	ASI 183mm min. Gain	111,0	148	1,0	25,7
1,6	ASI 183mm Unity Gain	102,5	137	0,9	23,7
24,2	5D MkII, ISO50	297,1	958	6,5	23,4
3,7	5D MkII, ISO800	112,2	362	2,4	8,8
2,7	ASI071, ca. Unity Gain	106,8	267	1,8	11,7

Noise comparison between the Kodak KAF8300 and Sony ICX814 sensors

KAF8300



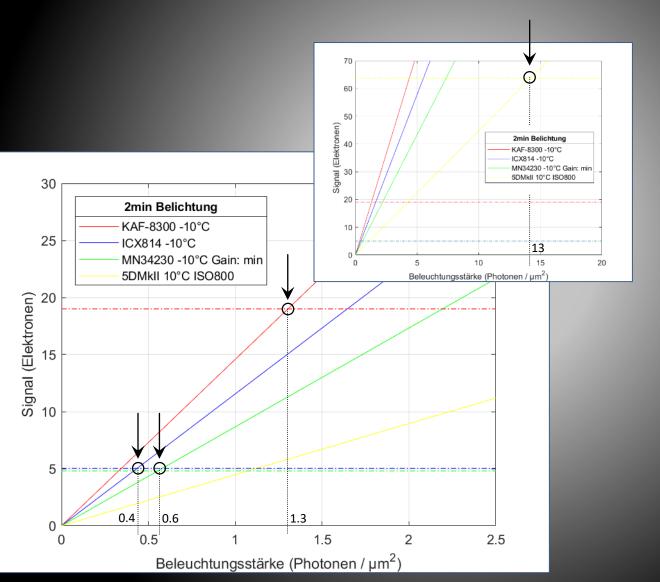
stargazerslounge.com/topic/281956-kodak-kaf8300-vs-sony-icx814-noise-comparison/


Erste Einschätzung Beleuchtungsstärke und resultierendes Signal

Zusammenfassung – Teil 1 1. Zwischenbilanz

- Der Dynamikumfang einer Kamera ist nur anhand einer eingehenden Betrachtung der elektrischen Parameter bewertbar. Die hier betrachteten Modelle haben – abgesehen von der DSLR – im Bereich einer Blendenstufe alle die gleiche Dynamik.
- Anhand der elektrischen Parameter sind keine Vorteile für CMOS- oder für CCD-Technologie erkennbar.
- Obwohl die Rauschparameter "alter Sensoren" (KAF-8300, KAI-11000) deutlich schlechter scheinen als die moderner Sensoren, werden immer noch sehr gute Bilder damit gemacht. Eine Ursache liegt in den effektiven Empfindlichkeiten (erforderliche Photonen für ein bestimmtes SNR).
- Die maximale Belichtungszeit muss bei jeder Kamera auf die effektive Full Well Kapazität abgestimmt werden: Je "moderner" die Kamera und je kleiner die Pixel, desto wichtiger wird das.

kurze Belichtung: nur Ausleserauschen

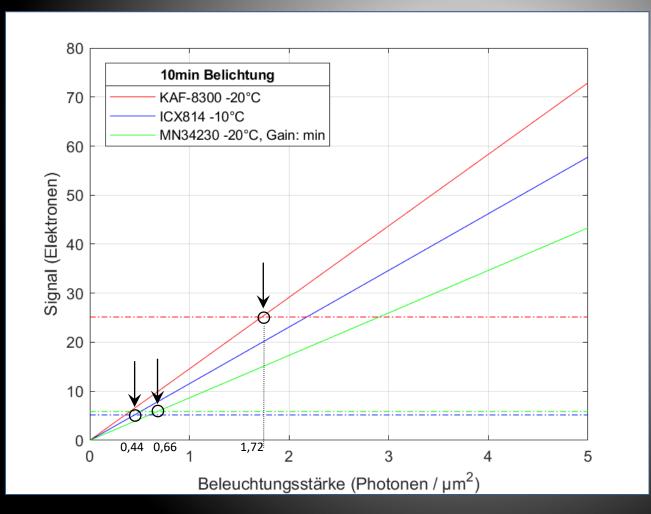

Rauschsignal entspricht einer Beleuchtungsstärken in Photonen pro µm²:

5D MkII: 0,82 KAF-8300: 0,48 MN34230: 0,20 / 0,41 ICX814: 0,42

Rauschsignal entspricht einer Beleuchtungsstärken in Photonen pro Pixel:

5D MkII: 36 KAF-8300: 14 MN34230: 3/6 ICX814: 6

2 min Belichtung: Dunkelstrom + Ausleserauschen


Rauschsignal entspricht einer Beleuchtungsstärken in Photonen pro µm²:

5D MkII: 13 KAF-8300: 1,3 MN34230: 0,6 ICX814: 0,42

Rauschsignal entspricht einer Beleuchtungsstärken in Photonen pro Pixel:

5D MkII: 532 KAF-8300: 38 MN34230: 9 ICX814: 6

10 min Belichtung bei realistischer Chiptemperatur: Dunkelstrom + Ausleserauschen

Rauschsignal entspricht einer Beleuchtungsstärken in Photonen pro µm²:

5D MkII: - KAF-8300: 1,72 MN34230: 0,67 ICX814: 0,44

Rauschsignal entspricht einer Beleuchtungsstärken in Photonen pro Pixel: 5D MkII:

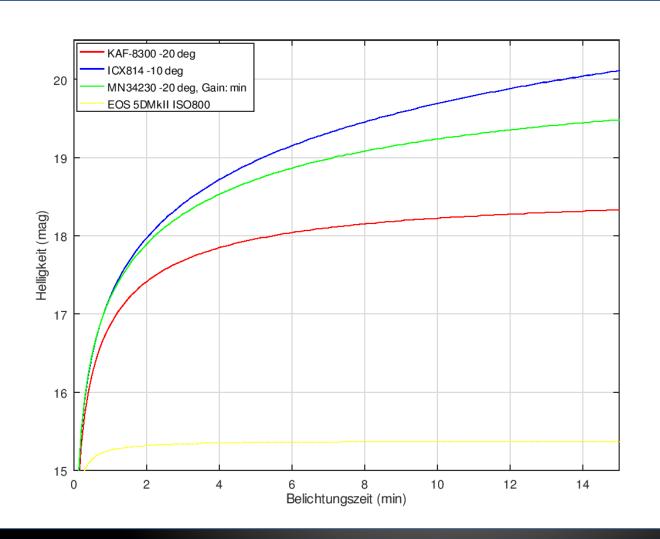
KAF-8300: 50 MN34230: 10 ICX814: 6

Vom Stern zum Pixel

Strahlungsleistung eines AOV Sterns Omag außerhalb der Erdatmosphäre:

Band	λ	F _λ (0)	P_λ	S _λ (0)
Dallu	nm	W/(m^2 *nm)	W	1/s
U	360	3,98E-11	2,08E-11	3,77E+07
В	440	6,95E-11	3,63E-11	8,04E+07
V	550	3,63E-11	1,90E-11	5,25E+07
R	700	1,70E-11	8,88E-12	3,13E+07
1	900	8,29E-11	4,33E-11	1,96E+08
			S(0)=	3,98E+08

Esprit 100 ED plus Korrektor (6+4 Glas-Luft Übergänge): τ =0,66 Annahme: F λ ist in den Bändern konstant und $\Delta\lambda$ = 100nm.


$$P_{\lambda} = \tau \cdot A_{Tel} \cdot \Delta \lambda \cdot F_{\lambda}(0)$$

$$S_{\lambda} = \frac{P_{\lambda}}{E} = \frac{P_{\lambda} \cdot \lambda}{h \cdot c}$$

$$S \approx S(0) \cdot 10^{(-0.4m)}$$

Helligkeit	Photonen
mag	pro Sek.
0	397931069
1	158419212
2	63067824
3	25107753
4	9995577
5	3979311
6	1584192
7	630678
8	251078
9	99956
10	39793
11	15842
12	6307
13	2511
14	1000
15	398
16	158
17	63
18	25
19	10
20	4
21	2

Erreichbare Grenzgrössen

Theoretisch erreichbare Helligkeiten als Funktion der Belichtungszeit.

Annahmen:

- A0V-Stern
- Licht wird auf einen Kreis mit 30 µm
 Durchmesser verteilt.
- 100 mm Refraktor
- lineares SNR = 10

Zusammenfassung – Teil 2 2. Zwischenbilanz

- Das betrachtete DSLR Model wird hinsichtlich Ausleserauschen und Dunkelstrom von allen anderen betrachteten Modellen deutlich übertroffen.
- Die Nachweisbarkeitsgrenze der DSLR liegt aufgrund der fehlenden Kühlung bei deutlich höheren Photonendichten als die aller anderen Sensoren.
- Der einstellbare Gain bei der MN34230 basierten Kamera bietet Vorteile bei Kurzbelichtungen (Lucky Imaging). Bei Belichtungen ab 1min ist jedoch nur minimaler Gain einsetzbar (effektive FW Kapazität).
- Der ICX814 gehört zu den empfindlichsten Chips mit extrem geringen Dunkelstrom bei normalem Ausleserauschen. Optimaler Einsatz bei langen Belichtungen schwacher Objekte.

Vergleich der Signale: Chiprauschen und Himmelhintergrund

RGB-Aufnahmen:											uter G	iroßsta	dthimn		
Hintergrund	ICX 814 -10°C			KAF8300 -20°C			MN34230 -20°C			IMX183 -10°C			EOS5DMkII +10°C		
mag / arc sec^2	1 s [e]	2 min [e]	min bis FW	1 s [e]	2 min [e]	min bis FW	1 s [e]	2 min [e]	min bis FW	1 s [e]	2 min [e]	min bis FW	1 s [e]	2 min [e]	min bis FW
18	33,6	4029	6	51,4	6163	8	<u>[e]</u> 27,4	3287	12	15,2	1826	16	44,7	<u>[e]</u> 5367	3
19	13,4	1604	16	20,4	2453	20	10,9	1308	31	6,1	727	41	17,8	2137	7
20	5,3	638	39	8,4	1004	50	4,3	521	77	2,4	289	104	7,1	851	17
21	2,1	254	98	3,2	389	129	1,	207	193	1,0	115	260	2,8	339	44
22	9,8	101	247	1,3	155	323	9,7	83	485	0,4	46	654	<mark>1</mark> ,1	135	110
	320	X		231x	(327	Κ		177	x		34x		
Schmalband – 3nm aus 40 nm Band:															
Hintergrund	IC	X 814 -10)°C	KA	F8300 -2	:0°C	MN	34230 -2	20°C	IM	X183 -1	0°C	EOS5DMkII +10°C		
mag / arc sec^2	1 s	2 min	30 min		2 min	30 min	1 s	2 min	30 min		2 min	30 min	1 s	2 min	30 min
mag / arc sec^2	1 s [e]	2 min [e]	30 min [e]	e/s	2 min [e]	30 min [e]	1 s [e]	2 min [e]	30 min [e]	e/s	2 min [e]	30 min [e]	1 s [e]	2 min [e]	30 min [e]
mag / arc sec^2				e/s 0,4			_			e/s 0,1					
-	[e]	[e]	[e]	•	[e]	[e]	[e]	[e]	[e]		[e]	[e]	[e]	[e]	[e]
18	[e]	[e]	[e] 453	0,4	[e]	[e] 693	[e]	[e] 25	[e] 370	0,1	[e] 14	[e] 205	[e]	[e]	[e]
18 19 20 21	[e] 0,3 0,1	[e] 30 12	[e] 453 180	0,4	[e] 46 18	[e] 693 276 113 44	[e] 0,2 0,1	[e] 25 10	[e] 370 147	0,1 0,0	[e] 14 5	[e] 205 82	[e] 0,3 0,1	[e] 40 16	[e] 604 240
18 19 20	[e] 0,3 0,1 0,0	[e] 30 12 5	[e] 453 180 72	0,4 0,2 0,1	[e] 46 18 8	[e] 693 276 113	[e] 0,2 0,1 0,0	[e] 25 10 4	[e] 370 147 59	0,1 0,0 0,0	[e] 14 5 2	[e] 205 82 33	[e] 0,3 0,1 0,1	[e] 40 16 6	[e] 604 240 96
18 19 20 21	[e] 0,3 0,1 0,0 0,0	[e] 30 12 5 2	[e] 453 180 72 29	0,4 0,2 0,1 0,0	[e] 46 18 8 3	[e] 693 276 113 44	[e] 0,2 0,1 0,0 0,0	[e] 25 10 4 2	[e] 370 147 59 23	0,1 0,0 0,0 0,0	[e] 14 5 2 1	[e] 205 82 33 13	[e] 0,3 0,1 0,1 0,0	[e] 40 16 6 3	[e] 604 240 96 38
18 19 20 21 22	[e] 0,3 0,1 0,0 0,0 0,0	[e] 30 12 5 2 1	[e] 453 180 72 29 11	0,4 0,2 0,1 0,0 0,0	[e] 46 18 8 3 1	[e] 693 276 113 44 17	[e] 0,2 0,1 0,0 0,0 0,0	[e] 25 10 4 2 1	[e] 370 147 59 23 9	0,1 0,0 0,0 0,0 0,0	[e] 14 5 2 1 0	[e] 205 82 33 13 5	[e] 0,3 0,1 0,1 0,0 0,0	[e] 40 16 6 3 1	[e] 604 240 96 38 15
18 19 20 21 22 23	[e] 0,3 0,1 0,0 0,0 0,0 0,0	[e] 30 12 5 2 1 0	[e] 453 180 72 29 11 5	0,4 0,2 0,1 0,0 0,0 0,0	[e] 46 18 8 3 1	[e] 693 276 113 44 17 7	[e] 0,2 0,1 0,0 0,0 0,0 0,0	[e] 25 10 4 2 1 0	[e] 370 147 59 23 9 4	0,1 0,0 0,0 0,0 0,0 0,0	[e] 14 5 2 1 0 0	[e] 205 82 33 13 5 2	[e] 0,3 0,1 0,1 0,0 0,0 0,0	[e] 40 16 6 3 1	[e] 604 240 96 38 15 6
18 19 20 21 22 23 24	[e] 0,3 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0	[e] 30 12 5 2 1 0 0	[e] 453 180 72 29 11 5	0,4 0,2 0,1 0,0 0,0 0,0	[e] 46 18 8 3 1 0 0	[e] 693 276 113 44 17 7 3	[e] 0,2 0,1 0,0 0,0 0,0 0,0 0,0 0,0	[e] 25 10 4 2 1 0 0	[e] 370 147 59 23 9 4 1	0,1 0,0 0,0 0,0 0,0 0,0 0,0	[e] 14 5 2 1 0 0 0	[e] 205 82 33 13 5 2 1	[e] 0,3 0,1 0,1 0,0 0,0 0,0 0,0	[e] 40 16 6 3 1 0 0	[e] 604 240 96 38 15 6 2

Dark Current

Stabilität des Dunkelstromes und des Ausleserauschens

Re: Background artifact issue

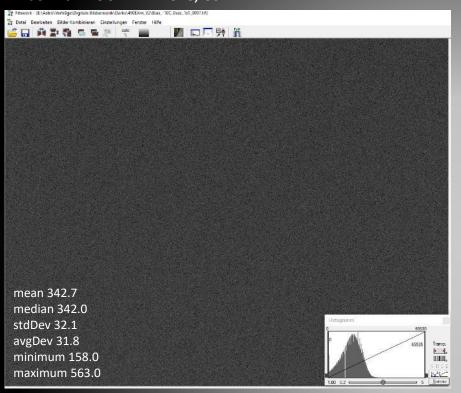
D by Sam » Thu May 24, 2018 1:58 am

Hi Jan

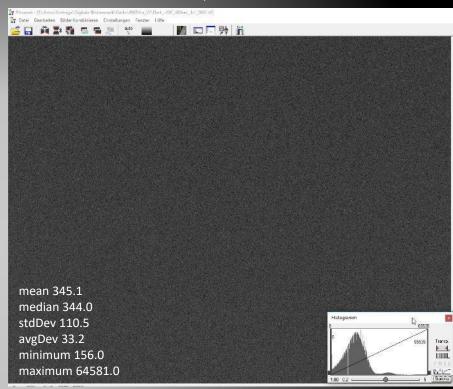
from our experience, this is because the dark current of 294 is a little higher and cannot be controlled very well during very long exposure

CMOS is not a simple sensor IC like CCD, it integrated many other digital parts such as power IC, gain amplifier etc, so the dark current is hard to control as stable as CCD.

I suggest you can shorten the exposure and try again from Andy's response the result is better

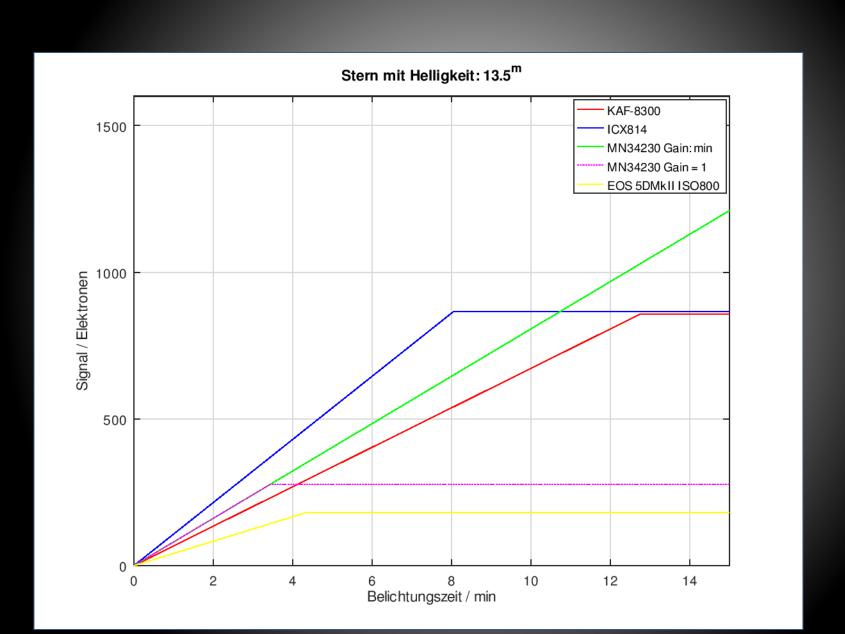

ZWO Founder Location:lon=120.6 lat=31.3 SuZhou China

bbs.astronomy-imaging-camera.com/viewtopic.php?f=21&t=8007

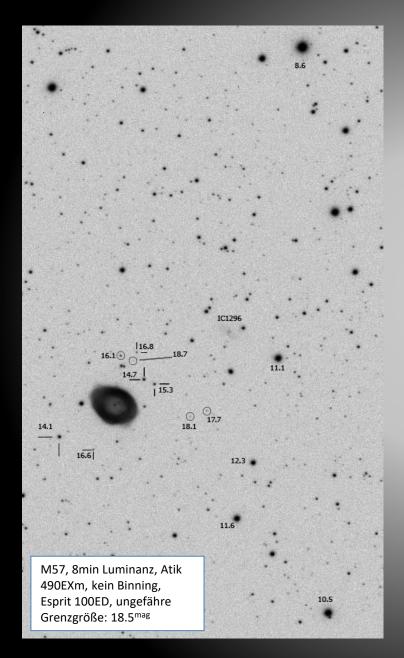

bbs.astronomy-imaging-camera.com/viewtopic.php?f=21&t=8007

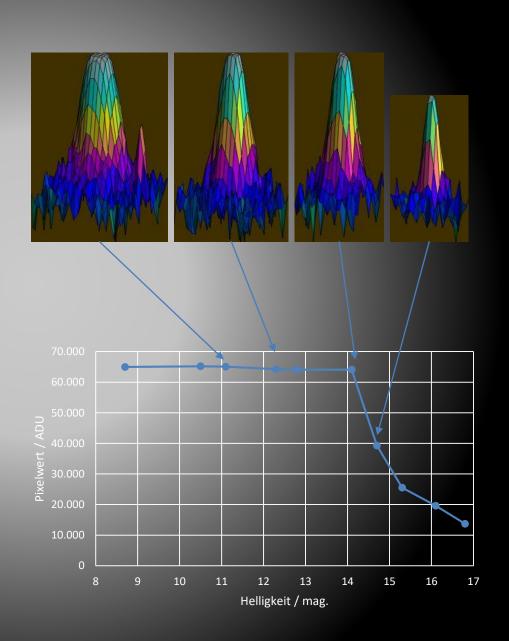
Dunkelstrom und Ausleserauschen – 490EXm

Bias: Atik 490EXm -10°C, 0s



Dark: Atik 490EXm -10°C, 600s




Atik 490EXm bei -10°C	Messung	Spec.	Einheit
gain	0.163 (0.22)	0.19	e ⁻ /ADU
readout noise	5.202 (5.2)	5.0	e ⁻
dark current	0.004 (0.0006)	0.0003	e ⁻ /sec
full well capacity	10660.467	12500	e ⁻
dynamic range	2049.112	2500	steps

Erreichen der Sättigung (FWC)

Überprüfung der Modellrechnung zur FWC – 490EXm

Zusammenfassung – Teil 3 Abschluss

- Jede Kamera stellt einen Kompromiss dar. Das gilt besonders für die "preiswerten"
 Modelle bis zum Four Thirds Format.
- Bei schlechter oder übertriebener Bildbearbeitung werden alle Eigenschaften der Sensoren hinfällig! Beispiele sind: vorhandene Gradienten, zu starke Rauschreduktion.
- Wichtiger als der absolute Wert der Dunkelströme ist deren Reproduzierbarkeit.
- Schmalbandaufnahmen oder LRGB bei extrem dunklem Himmel:
 - Sehr geringes Ausleserauschen wichtig (Sony Sensoren, CMOS). QE bei entsprechender Wellenlänge beachten!
 - Kodak Sensoren haben kein schlechtes sondern ein geringes Ausleserauschen.
 Kompensation durch lang belichtete Einzelframes möglich. Achtung: FWC beachten!
- Lichtverschmutzter Himmel: Ausleserauschen keine praktische Bedeutung. Moderne Sensoren können hier Vorteile kaum ausspielen.